Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
2.
Cell Mol Immunol ; 21(4): 362-373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38374404

ABSTRACT

Vγ9Vδ2 T cells are specialized effector cells that have gained prominence as immunotherapy agents due to their ability to target and kill cells with altered pyrophosphate metabolites. In our effort to understand how cancer cells evade the cell-killing activity of Vγ9Vδ2 T cells, we performed a comprehensive genome-scale CRISPR screening of cancer cells. We found that four molecules belonging to the butyrophilin (BTN) family, specifically BTN2A1, BTN3A1, BTN3A2, and BTN3A3, are critically important and play unique, nonoverlapping roles in facilitating the destruction of cancer cells by primary Vγ9Vδ2 T cells. The coordinated function of these BTN molecules was driven by synchronized gene expression, which was regulated by IFN-γ signaling and the RFX complex. Additionally, an enzyme called QPCTL was shown to play a key role in modifying the N-terminal glutamine of these BTN proteins and was found to be a crucial factor in Vγ9Vδ2 T cell killing of cancer cells. Through our research, we offer a detailed overview of the functional genomic mechanisms that underlie how cancer cells escape Vγ9Vδ2 T cells. Moreover, our findings shed light on the importance of the harmonized expression and function of gene family members in modulating T-cell activity.


Subject(s)
Neoplasms , T-Lymphocytes , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Butyrophilins/genetics , Butyrophilins/metabolism , Lymphocyte Activation/genetics , Cell Death
3.
Clin Rheumatol ; 43(1): 489-499, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37688767

ABSTRACT

OBJECTIVE: Systemic lupus erythematosus is a complex autoimmune disorder, and evidence supports the significance of genetic polymorphisms in SLE genetic susceptibility. The aim of this study was to assess the effects of BTN3A1 (butyrophilin 3A1), SHP2 (Src homology-2 containing protein tyrosine phosphatase), CD274 (programmed cell death 1 ligand 1), and STAT3 (signal transducer-activator of transcription 3) gene interactions on SLE risk. MATERIALS AND METHODS: Two hundred and ninety patients diagnosed with SLE and 370 healthy controls were recruited. A multifactor dimensionality reduction (MDR) approach was used to determine the epistasis among single nucleotide polymorphisms (SNPs) on the BTN3A1 (rs742090), SHP2 (rs58116261), CD174 (rs702275), and STAT3 (rs8078731) genes. The best risk prediction model was identified in terms of precision and cross-validation consistency. RESULTS: Allele A and genotype AA were negatively related to genetic susceptibility of SLE for BTN3A1 rs742090 (OR = 0.788 (0.625-0.993), P = 0.044; OR = 0.604 (0.372-0.981), P = 0.040). For STAT3 rs8078731, allele A and genotype AA were positively related to the risk of SLE (OR = 1.307 (1.032-1.654), P = 0.026; OR = 1.752 (1.020-3.010), P = 0.041). MDR analysis revealed the most significant interaction between BTN3A1 rs742090 and SHP2 rs58116261. The best risk prediction model was a combination of BTN3A1 rs742090, SHP2 rs58116261, and STAT3 rs8078731 (accuracy = 0.5866, consistency = 10/10, OR = 1.9870 (1.5964-2.4731), P = 0.001). CONCLUSION: These data indicate that risk prediction models formed by gene interactions (BTN3A1, SHP2, STAT3) can identify susceptible populations of SLE. Key Points • BTN3A1 rs742090 polymorphism was a protective factor for systemic lupus erythematosus, while STAT3 rs8078731 polymorphism was a risk factor. • There was a strong synergistic effect of BTN3A1 rs742090 and SHP2 rs58116261, and interaction among BTN3A1 rs742090, SHP2 rs58116261, and STAT3 rs8078731 constructed the best model to show association with SLE risk.


Subject(s)
B7-H1 Antigen , Lupus Erythematosus, Systemic , Humans , Antigens, CD , Butyrophilins/genetics , Case-Control Studies , Gene Frequency , Genetic Predisposition to Disease , Genotype , Lupus Erythematosus, Systemic/diagnosis , Polymorphism, Single Nucleotide , STAT3 Transcription Factor/genetics
4.
Sci Adv ; 9(49): eadj6174, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38055824

ABSTRACT

Clonotypic αß T cell responses to cargoes presented by major histocompatibility complex (MHC), MR1, or CD1 proteins underpin adaptive immunity. Those responses are mostly mediated by complementarity-determining region 3 motifs created by quasi-random T cell receptor (TCR) gene rearrangements, with diversity being highest for TCRγδ. Nonetheless, TCRγδ also displays nonclonotypic innate responsiveness following engagement of germline-encoded Vγ-specific residues by butyrophilin (BTN) or BTN-like (BTNL) proteins that uniquely mediate γδ T cell subset selection. We now report that nonclonotypic TCR engagement likewise induces distinct phenotypes in TCRαß+ cells. Specifically, antibodies to germline-encoded human TCRVß motifs consistently activated naïve or memory T cells toward core states distinct from those induced by anti-CD3 or superantigens and from others commonly reported. Those states combined selective proliferation and effector function with activation-induced inhibitory receptors and memory differentiation. Thus, nonclonotypic TCRVß targeting broadens our perspectives on human T cell response modes and might offer ways to induce clinically beneficial phenotypes in defined T cell subsets.


Subject(s)
Receptors, Antigen, T-Cell, alpha-beta , Receptors, Antigen, T-Cell, gamma-delta , Humans , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocyte Subsets , Butyrophilins/genetics , Butyrophilins/metabolism , Phenotype , Immunotherapy
5.
Nat Commun ; 14(1): 7617, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993425

ABSTRACT

Butyrophilin (BTN)-3A and BTN2A1 molecules control the activation of human Vγ9Vδ2 T cells during T cell receptor (TCR)-mediated sensing of phosphoantigens (PAg) derived from microbes and tumors. However, the molecular rules governing PAg sensing remain largely unknown. Here, we establish three mechanistic principles of PAg-mediated γδ T cell activation. First, in humans, following PAg binding to the intracellular BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the extracellular V-domain of BTN3A2/BTN3A3. Moreover, the localization of both protein domains on different chains of the BTN3A homo-or heteromers is essential for efficient PAg-mediated activation. Second, the formation of BTN3A homo-or heteromers, which differ in intracellular trafficking and conformation, is controlled by molecular interactions between the juxtamembrane regions of the BTN3A chains. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and the division of labor in BTN proteins improves our understanding of PAg sensing and elucidates a mode of action that may apply to other BTN family members.


Subject(s)
Intraepithelial Lymphocytes , Receptors, Antigen, T-Cell, gamma-delta , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , B30.2-SPRY Domain , Lymphocyte Activation , Protein Domains , Butyrophilins/genetics , Antigens, CD/metabolism
6.
Sci Rep ; 13(1): 18651, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903831

ABSTRACT

Intracellular bacteria produce antigens, which serve as potent activators of γδ T cells. Phosphoantigens are presented via a complex of butyrophilins (BTN) to signal infection to human Vγ9+Vδ2+ T cells. Here, we established an in vitro system allowing for studies of Vγ9+Vδ2+ T cell activity in coculture with epithelial cells infected with the intracellular bacterial pathogen Listeria monocytogenes. We report that the Vγ9+Vδ2+ T cells efficiently control L. monocytogenes growth in such cultures. This effector function requires the expression of members of the BTN3A family on epithelial cells. Specifically, we observed a BTN3A1-independent BTN3A3 activity to present antigen to Vγ9+Vδ2+ T cells. Since BTN3A1 is the only BTN3A associated with phosphoantigen presentation, our study suggests that BTN3A3 may present different classes of antigens to mediate Vγ9+Vδ2+ T cell effector function against L. monocytogenes-infected epithelia.


Subject(s)
Listeria monocytogenes , T-Lymphocytes , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Butyrophilins/genetics , Butyrophilins/metabolism , Listeria monocytogenes/metabolism , Antigens , Epithelial Cells/metabolism , Lymphocyte Activation , Antigens, CD/metabolism
7.
Cancer Gene Ther ; 30(12): 1649-1662, 2023 12.
Article in English | MEDLINE | ID: mdl-37884580

ABSTRACT

Non-small cell lung cancer (NSCLC) is a common and lethal malignancy. The carcinogenic roles of lncRNA CALML3 antisense RNA 1 (CALML3-AS1) have been documented. However, the function and potential mechanisms of CALML3-AS1 in the progression of NSCLC need to be further explored. The molecule expression was assessed by qRT-PCR and Western blot. The subcellular localization of CALML3-AS1 was observed by fluorescence in situ hybridization (FISH). The malignant behaviors of NSCLC cells were evaluated by CCK-8, colony formation, EdU, wound healing and transwell assays. In vivo xenograft tumor and liver metastatic models were established. The molecular mechanisms were investigated by RIP, RNA pull-down and ChIP assays. The methylation level was detected by MSP. Herein, we found that CALML3-AS1 was upregulated, while butyrophilin-like 9 (BTNL9) was downregulated in NSCLC. Functionally, CALML3-AS1 depletion repressed NSCLC cell malignant phenotypes, in vivo tumor growth, and liver metastasis. Mechanistically, AlkB homolog 5 (ALKBH5) enhanced CALML3-AS1 stability via N6-methyladenosine (m6A) demethylation, whereas m6A reader YTH domain-containing 2 (YTHDC2) destabilized CALML3-AS1. Moreover, CALML3-AS1 inhibited BTNL9 transcription and expression through the recruitment of Zeste homolog 2 (EZH2). Rescue experiments demonstrated that BTNL9 downregulation counteracted sh-CALML3-AS1-mediated antitumor effects on NSCLC. Taken together, CALML3-AS1 modulated by ALKBH5 and YTHDC2 in an m6A modification dependent manner drives NSCLC progression via epigenetically repressing BTNL9.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA Methylation , RNA, Long Noncoding , Humans , Butyrophilins/genetics , Butyrophilins/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , In Situ Hybridization, Fluorescence , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Methylation , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA Methylation/genetics
8.
BMC Med Genomics ; 16(1): 234, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798795

ABSTRACT

BACKGROUND: Thyroid cancer (THCA) is the most common type of endocrine cancers, and the disease recurrences were usually associated with the risks of metastasis and fatality. Butyrophilin-like protein 9 (BTNL9) is a member of the immunoglobulin families. This study investigated the prognostic role of BTNL9 in THCA. METHODS: Gene enhancers of BTNL9 were identified by interrogating H3K27ac ChIP-seq and RNA-seq data of papillary thyroid cancer (PTC) and benign thyroid nodule (BTN) tissues. Meanwhile, BTNL9 expression level was verified by qRT-PCR in 30 pairs of primary THCA and adjacent normal tissues. Clinicopathological and RNA sequencing data were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) to analyze the relations between BTNL9 expression and immune cell infiltration, chemokines/cytokines, immune checkpoint genes, clinical parameters and prognosis values. Besides, survival analysis combining BTNL9 expression and immune cell infiltration scores was conducted. Functional enrichment analysis was performed to investigate the potential biological mechanisms. Cox regression analyses were used to explore independent clinical indicators, and a nomogram model incorporating BTNL9 expression with clinical parameters was established. RESULTS: BTNL9 showed significantly stronger H3K27ac modifications in BTN than PTC tissues at the promoter region (chr5: 181,035,673-181,047,436) and gene body (chr5: 181,051,544-181,054,849). The expression levels of BTNL9 were significantly down-regulated in THCA samples compared to normal tissues, and were strongly associated with different tumor stages, immune cell infiltrations, chemokines/cytokines and immune checkpoint genes in THCA. Functional enrichment analyses indicated that BTNL9 was involved in immune-related and cancer-related pathways. The Kaplan-Meier analysis showed lower BTNL9 expression was associated with poorer progression-free interval (PFI). BTNL9 expression and pathologic stages were independent prognostic indicators of PFI in THCA. CONCLUSIONS: The results implied an important role of BTNL9 in the tumor progression, with the possibility of serving as a novel prognostic biomarker and a potential therapeutic target for THCA.


Subject(s)
Neoplasm Recurrence, Local , Thyroid Neoplasms , Humans , Prognosis , Thyroid Neoplasms/genetics , Cytokines , Chemokines , Biomarkers , Butyrophilins/genetics
9.
J Transl Med ; 21(1): 672, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770968

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. This study investigates the therapeutic potential of human Vγ9Vδ2 T cells in GBM treatment. The sensitivity of different glioma specimens to Vγ9Vδ2 T cell-mediated cytotoxicity is assessed using a patient-derived tumor cell clusters (PTCs) model. METHODS: The study evaluates the anti-tumor effect of Vγ9Vδ2 T cells in 26 glioma cases through the PTCs model. Protein expression of BTN2A1 and BTN3A1, along with gene expression related to lipid metabolism and glioma inflammatory response pathways, is analyzed in matched tumor tissue samples. Additionally, the study explores two strategies to re-sensitize tumors in the weak anti-tumor effect (WAT) group: utilizing a BTN3A1 agonistic antibody or employing bisphosphonates to inhibit farnesyl diphosphate synthase (FPPS). Furthermore, the study investigates the efficacy of genetically engineered Vγ9Vδ2 T cells expressing Car-B7H3 in targeting diverse GBM specimens. RESULTS: The results demonstrate that Vγ9Vδ2 T cells display a stronger anti-tumor effect (SAT) in six glioma cases, while showing a weaker effect (WAT) in twenty cases. The SAT group exhibits elevated protein expression of BTN2A1 and BTN3A1, accompanied by differential gene expression related to lipid metabolism and glioma inflammatory response pathways. Importantly, the study reveals that the WAT group GBM can enhance Vγ9Vδ2 T cell-mediated killing sensitivity by incorporating either a BTN3A1 agonistic antibody or bisphosphonates. Both approaches support TCR-BTN mediated tumor recognition, which is distinct from the conventional MHC-peptide recognition by αß T cells. Furthermore, the study explores an alternative strategy by genetically engineering Vγ9Vδ2 T cells with Car-B7H3, and both non-engineered and Car-B7H3 Vγ9Vδ2 T cells demonstrate promising efficacy in vivo, underscoring the versatile potential of Vγ9Vδ2 T cells for GBM treatment. CONCLUSIONS: Vγ9Vδ2 T cells demonstrate a robust anti-tumor effect in some glioma cases, while weaker in others. Elevated BTN2A1 and BTN3A1 expression correlates with improved response. WAT group tumors can be sensitized using a BTN3A1 agonistic antibody or bisphosphonates. Genetically engineered Vγ9Vδ2 T cells, i.e.,  Car-B7H3, show promising efficacy. These results together highlight the versatility of Vγ9Vδ2 T cells for GBM treatment.


Subject(s)
Glioblastoma , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Receptors, Chimeric Antigen/metabolism , Receptors, Antigen, T-Cell, gamma-delta , Glioblastoma/genetics , Glioblastoma/therapy , Glioblastoma/metabolism , Diphosphonates , Butyrophilins/genetics , Antigens, CD/metabolism
10.
Science ; 381(6663): eadh0301, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37708268

ABSTRACT

Murine intraepithelial γδ T cells include distinct tissue-protective cells selected by epithelial butyrophilin-like (BTNL) heteromers. To determine whether this biology is conserved in humans, we characterized the colonic γδ T cell compartment, identifying a diverse repertoire that includes a phenotypically distinct subset coexpressing T cell receptor Vγ4 and the epithelium-binding integrin CD103. This subset was disproportionately diminished and dysregulated in inflammatory bowel disease, whereas on-treatment CD103+γδ T cell restoration was associated with sustained inflammatory bowel disease remission. Moreover, CD103+Vγ4+cell dysregulation and loss were also displayed by humans with germline BTNL3/BTNL8 hypomorphism, which we identified as a risk factor for penetrating Crohn's disease (CD). Thus, BTNL-dependent selection and/or maintenance of distinct tissue-intrinsic γδ T cells appears to be an evolutionarily conserved axis limiting the progression of a complex, multifactorial, tissue-damaging disease of increasing global incidence.


Subject(s)
Butyrophilins , Inflammatory Bowel Diseases , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocyte Subsets , Animals , Humans , Mice , Butyrophilins/genetics , Colon/immunology , Crohn Disease/genetics , Crohn Disease/immunology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , T-Lymphocyte Subsets/immunology , Intestinal Mucosa/immunology
11.
Zh Nevrol Psikhiatr Im S S Korsakova ; 123(7. Vyp. 2): 60-64, 2023.
Article in Russian | MEDLINE | ID: mdl-37560835

ABSTRACT

OBJECTIVE: To study the whole-genome DNA methylation profiles of peripheral blood mononuclear blood cells (PBMCs) of patients with relapsing-remitting multiple sclerosis (RRMS) in remission and relapse in order to assess the contribution of this epigenetic mechanism of gene expression regulation to the activity of the pathological process. MATERIAL AND METHODS: Eight patients with RRMS in remission and 6 patients in relapse were included in the study. Methylation levels of DNA CpG sites in PBMCs were analyzed using Infinium HumanMethylation450 BeadChip DNA microarrays. RESULTS: Seven differentially methylated positions (DMPs) were identified, of which 3 were hypermethylated (cg02981003, cg18486102, cg19533582) and 4 were hypomethylated (cg16814680, cg1964802, cg18584440, cg08291996) during RRMS relapse. Five DMPs are located in protein-coding genes (GPR123, FAIM2, BTNL2, ZNF8, ASAP2), one in microRNA gene (MIR548N), and one in an intergenic region. For all identified DMPs, we observed a change in DNA methylation levels of more than 20% (range 20.2-57.5%). Hierarchical clustering of DNA samples on the heatmap shows their clear aggregation into separate clusters corresponding to RRMS patients in the stages of relapse and remission. CONCLUSION: For the first time it was shown that during relapse and remission of RRMS there are differences in the DNA methylation profile that allow discrimination between these clinical stages. These data indicate the involvement of the epigenetic mechanism of DNA methylation in the activation of the pathological process in RRMS.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/genetics , DNA Methylation , Leukocytes, Mononuclear/pathology , Multiple Sclerosis, Relapsing-Remitting/genetics , Chronic Disease , DNA , Recurrence , Butyrophilins/genetics , GTPase-Activating Proteins/genetics , Kruppel-Like Transcription Factors/genetics
12.
Pathol Res Pract ; 249: 154769, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37634314

ABSTRACT

The butyrophilin family genes are immunoregulatory genes with either immune stimulatory or inhibitory functions. In the present study, we analyzed three butyrophilin genes, BTN2A1 (immune-stimulatory), BTN2A2 (inhibitory), and BTNL3 (stimulatory) genes in sporadic colon cancers (CCs). By the mutation analysis, we identified the frameshift mutations of BTN2A1, BTN2A2, and BTNL3 genes in 2, 4, and 8 CCs in microsatellite instability-high (MSI-H) CCs (2.1-8.4% of MSI-H), respectively, but not the microsatellite stable (MSS) CCs. Four of 16 MSI-H CCs (25%) exhibited regional heterogeneous mutations (RHM) of BTN2A1, BTN2A2, and BTNL3 genes. In immunohistochemistry, BTNL3 expression was lost in approximately 30% of CCs, and BTN2A2 loss was minimal in CCs (around 3%) irrespective of the MSI status. Our study revered that butyrophilin family genes BTN2A1, BTN2A2, and BTNL3 harbored multiple levels of gene alterations at frameshift mutations, RHMs, and expression losses in CCs, suggesting that butyrophilin family genes could contribute to CC pathogenesis by altering immune responses.


Subject(s)
Colonic Neoplasms , Frameshift Mutation , Humans , Mutation , Butyrophilins/genetics , Colonic Neoplasms/genetics , Family , Microsatellite Instability
13.
Exp Eye Res ; 233: 109553, 2023 08.
Article in English | MEDLINE | ID: mdl-37394087

ABSTRACT

DNA methylation is one of the important epigenetic mechanisms for modulating gene expression. By performing a genome-wide methylation association analysis of whole peripheral blood from 60 Vogt-Koyanagi-Harada disease (VKH) patients and 60 healthy controls, we depicted the global DNA methylation status of VKH disease. Further pyrosequencing validation in 160 patients and 159 controls identified 3 aberrant CpG sites in HLA gene regions including cg04026937 and cg18052547 (located in HLA-DRB1 region), and cg13778567 (HLA-DQA1). We also identified 9 aberrant CpG sites in non-HLA gene regions including cg13979407, cg21075643, cg24290586, cg10135747 and cg22707857 (BTNL2), cg22155039 (NOTCH4), cg02605387 (TNXB), cg06255004 (AGPAT2) and cg18855195 (RIBC2). Increased mRNA levels of BTNL2, NOTCH4 and TNXB were identified in VKH patients when compared with healthy controls, consistent with the hypomethylated CpG status in these gene regions. Moreover, seven aberrantly methylated CpG sites may serve as a diagnostic marker for VKH disease (AUC = 84.95%, 95%CI: 79.49%-90.41%).


Subject(s)
DNA Methylation , Uveomeningoencephalitic Syndrome , Humans , Alleles , Butyrophilins/genetics , East Asian People , Epigenome/genetics , Uveomeningoencephalitic Syndrome/genetics , Genome-Wide Association Study
14.
Transl Psychiatry ; 13(1): 244, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37407551

ABSTRACT

Autism spectrum disorders (ASD) are neurodevelopmental conditions that are for subsets of individuals, underpinned by dysregulated immune processes, including inflammation, autoimmunity, and dysbiosis. Consequently, the major histocompatibility complex (MHC)-hosted human leukocyte antigen (HLA) has been implicated in ASD risk, although seldom investigated. By utilizing a GWAS performed by the EU-AIMS consortium (LEAP cohort), we compared HLA and MHC genetic variants, single nucleotide polymorphisms (SNP), and haplotypes in ASD individuals, versus typically developing controls. We uncovered six SNPs, namely rs9268528, rs9268542, rs9268556, rs14004, rs9268557, and rs8084 that crossed the Bonferroni threshold, which form the underpinnings of 3 independent genetic pathways/blocks that differentially associate with ASD. Block 1 (rs9268528-G, rs9268542-G, rs9268556-C, and rs14004-A) afforded protection against ASD development, whilst the two remaining blocks, namely rs9268557-T, and rs8084-A, associated with heightened risk. rs8084 and rs14004 mapped to the HLA-DRA gene, whilst the four other SNPs located in the BTNL2 locus. Different combinations amongst BTNL2 SNPs and HLA amino acid variants or classical alleles were found either to afford protection from or contribute to ASD risk, indicating a genetic interplay between BTNL2 and HLA. Interestingly, the detected variants had transcriptional and/or quantitative traits loci implications. As BTNL2 modulates gastrointestinal homeostasis and the identified HLA alleles regulate the gastrointestinal tract in celiac disease, it is proposed that the data on ASD risk may be linked to genetically regulated gut inflammatory processes. These findings might have implications for the prevention and treatment of ASD, via the targeting of gut-related processes.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/genetics , HLA Antigens/genetics , Polymorphism, Single Nucleotide , Haplotypes , Quantitative Trait Loci , Genetic Predisposition to Disease , Alleles , Butyrophilins/genetics
15.
Cancer Immunol Res ; 11(8): 1137-1155, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37309673

ABSTRACT

Intraepithelial lymphocytes (IEL) expressing γδ T-cell receptors (γδTCR) play key roles in elimination of colon cancer. However, the precise mechanisms by which progressing cancer cells evade immunosurveillance by these innate T cells are unknown. Here, we investigated how loss of the Apc tumor suppressor in gut tissue could enable nascent cancer cells to escape immunosurveillance by cytotoxic γδIELs. In contrast with healthy intestinal or colonic tissue, we found that γδIELs were largely absent from the microenvironment of both mouse and human tumors, and that butyrophilin-like (BTNL) molecules, which can critically regulate γδIEL through direct γδTCR interactions, were also downregulated in tumors. We then demonstrated that ß-catenin activation through loss of Apc rapidly suppressed expression of the mRNA encoding the HNF4A and HNF4G transcription factors, preventing their binding to promoter regions of Btnl genes. Reexpression of BTNL1 and BTNL6 in cancer cells increased γδIEL survival and activation in coculture assays but failed to augment their cancer-killing ability in vitro or their recruitment to orthotopic tumors. However, inhibition of ß-catenin signaling via genetic deletion of Bcl9/Bcl9L in either Apc-deficient or mutant ß-catenin mouse models restored Hnf4a, Hnf4g, and Btnl gene expression and γδ T-cell infiltration into tumors. These observations highlight an immune-evasion mechanism specific to WNT-driven colon cancer cells that disrupts γδIEL immunosurveillance and furthers cancer progression.


Subject(s)
Colonic Neoplasms , Intraepithelial Lymphocytes , Mice , Animals , Humans , beta Catenin/genetics , beta Catenin/metabolism , Intraepithelial Lymphocytes/metabolism , Butyrophilins/genetics , Butyrophilins/metabolism , Colonic Neoplasms/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Tumor Microenvironment
16.
J Autoimmun ; 139: 103071, 2023 09.
Article in English | MEDLINE | ID: mdl-37356345

ABSTRACT

Butyrophilins are surface receptors belonging to the immunoglobulin superfamily. While several members of the butyrophilin family have been implicated in the development of unconventional T cells, butyrophilin 2a2 (Btn2a2) has been shown to inhibit conventional T cell activation. Here, we demonstrate that in steady state, the primary source of Btn2a2 are thymic epithelial cells (TEC). Absence of Btn2a2 alters thymic T cell maturation and bypasses central tolerance mechanisms. Furthermore, Btn2a2-/- mice develop spontaneous autoimmunity resembling human primary Sjögren's Syndrome (pSS), including formation of tertiary lymphoid structures (TLS) in target organs. Ligation of Btn2a2 on developing thymocytes is associated with reduced TCR signaling and CD5 levels, while absence of Btn2a2 results in increased TCR signaling and CD5 levels. These results define a novel role for Btn2a2 in promoting central tolerance by modulating TCR signaling strength and indicate a potential mechanism of pSS development.


Subject(s)
Autoimmune Diseases , Central Tolerance , Mice , Humans , Animals , Butyrophilins/genetics , Thymus Gland , Epithelial Cells , Receptors, Antigen, T-Cell/genetics
17.
J Immunol ; 211(1): 23-33, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37171180

ABSTRACT

Intracellular binding of small-molecule phospho-Ags to the HMBPP receptor complex in infected cells leads to extracellular detection by T cells expressing the Vγ9Vδ2 TCR, a noncanonical method of Ag detection. The butyrophilin proteins BTN2A1 and BTN3A1 are part of the complex; however, their precise roles are unclear. We suspected that BTN2A1 and BTN3A1 form a tetrameric (dimer of dimers) structure, and we wanted to probe the importance of the BTN2A1 homodimer. We analyzed mutations to human BTN2A1, using internal domain or full-length BTN2A1 constructs, expressed in Escherichia coli or human K562 cells, that might disrupt its structure and/or function. Although BTN2A1 is a disulfide-linked homodimer, mutation of cysteine residues C247 and C265 did not affect the ability to stimulate T cell IFN-γ production by ELISA. Two mutations of the juxtamembrane region (at EKE282) failed to impact BTN2A1 function. In contrast, single point mutations (L318G and L325G) near the BTN2A1 B30.2 domain blocked phospho-Ag response. Size exclusion chromatography and nuclear magnetic resonance (NMR) experiments showed that the isolated BTN2A1 B30.2 domain is a homodimer, even in the absence of its extracellular and transmembrane region. [31P]-NMR experiments confirmed that HMBPP binds to BTN3A1 but not BTN2A1, and binding abrogates signals from both phosphorus atoms. Furthermore, the BTN2A1 L325G mutation but not the L318G mutation prevents both homodimerization of BTN2A1 internal domain constructs in size exclusion chromatography (and NMR) experiments and their binding to HMBPP-bound BTN3A1 in isothermal titration calorimetry experiments. Together, these findings support the importance of homodimerization within the BTN2A1 internal domain for phospho-Ag detection.


Subject(s)
Lymphocyte Activation , Receptors, Antigen, T-Cell, gamma-delta , Humans , Antigens/metabolism , Antigens, CD/metabolism , Butyrophilins/genetics , Mutation , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocytes
18.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240071

ABSTRACT

The efficacy of current immunotherapies remains limited in many solid epithelial malignancies. Recent investigations into the biology of butyrophilin (BTN) and butyrophilin-like (BTNL) molecules, however, suggest these molecules are potent immunosuppressors of antigen-specific protective T cell activity in tumor beds. BTN and BTNL molecules also associate with each other dynamically on cellular surfaces in specific contexts, which modulates their biology. At least in the case of BTN3A1, this dynamism drives the immunosuppression of αß T cells or the activation of Vγ9Vδ2 T cells. Clearly, there is much to learn regarding the biology of BTN and BTNL molecules in the context of cancer, where they may represent intriguing immunotherapeutic targets that could potentially synergize with the current class of immune modulators in cancer. Here, we discuss our current understanding of BTN and BTNL biology, with a particular focus on BTN3A1, and potential therapeutic implications for cancer.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Butyrophilins/genetics , Butyrophilins/metabolism , Immunity, Cellular , Antigens , Neoplasms/therapy , Receptors, Antigen, T-Cell, gamma-delta , Lymphocyte Activation , Antigens, CD/metabolism
19.
J Invest Dermatol ; 143(8): 1439-1448.e21, 2023 08.
Article in English | MEDLINE | ID: mdl-36804966

ABSTRACT

The discovery of pathogenic variants provided biological insight into the role of host genetic factors in generalized pustular psoriasis (GPP). However, not all those affected by GPP carry variants in the reported genes. To comprehensively explore the molecular pathogenesis of GPP, whole-exome sequencing was performed, and two loci were identified with exome-wide significance through single variant association analysis: rs148755083 in the IL36RN gene (Pcombined = 1.19 × 10-18, OR = 8.26) and HLA-C∗06:02 within the major histocompatibility complex region (Pcombined = 8.38 × 10-12, OR = 2.98). Gene burden testing revealed that BTN3A3 correlated with GPP (Pcombined = 1.14 × 10-10, OR = 5.59). Subtype analysis showed that IL36RN and BTN3A3 were both significantly associated with GPP alone and GPP with psoriasis vulgaris, whereas a correlation with HLA-C∗06:02 was only observed in GPP with psoriasis vulgaris. Functional analysis revealed that BTN3A3 regulated cell proliferation and inflammatory balance in GPP. In particular, loss of function of BTN3A3 activated NF-κB and promoted the production of inflammatory cytokines by inhibiting IL-36Ra expression to disturb the IL-1/IL-36 inflammatory axis and enhance the TNF-α-mediated pathway. Our findings identify BTN3A3 as, to our knowledge, a previously unreported pathogenic determinant, expanding our understanding of the genetic basis of GPP.


Subject(s)
Psoriasis , Skin Diseases, Vesiculobullous , Humans , East Asian People , Genetic Testing , HLA-C Antigens/genetics , Interleukins/genetics , Psoriasis/genetics , Psoriasis/pathology , Skin Diseases, Vesiculobullous/genetics , Butyrophilins/genetics
20.
Transfusion ; 63(1): 230-238, 2023 01.
Article in English | MEDLINE | ID: mdl-36349441

ABSTRACT

BACKGROUND: Scianna (Sc) antigens, seven high and two of low prevalence, are expressed on erythrocyte membrane-associated protein (ERMAP). We investigated SC (ERMAP) in individuals who made antibodies to high prevalence Scianna antigens, and propose a 3D model for ERMAP to precisely localize the residues associated with the known antigens. METHODS: Serological testing and DNA sequencing was performed by standard methods. A 3D structural model was built using a multi-template homology approach. Protein structures representing missense variants associated with the loss or gain of an antigen were generated. Residue accessibility and intraprotein interactions were compared with the wild-type protein. RESULTS: Two new SC alleles, one with c.349C > T (p.Arg117Cys) in a woman from South India with anti-Sc3 in her plasma, and a c.217_219delinsTGT (p.Arg73Cys) in an African-American woman with an antibody to a new high prevalence antigen, termed SCAC, were identified. Six structural templates were used to model ERMAP. 3D analysis showed that residues key for Scianna antigen expression were all exposed at the surface of the extracellular domain. The p.Arg117Cys change was predicted to abolish interactions between residues 93 and 117, with no compensating interactions. CONCLUSION: We confirm the extracellular location of Scianna residues responsible for antigen expression which predicts direct accessibility to antibodies. Loss of intraprotein interactions appear to be responsible for a Sc null and production of anti-Sc3 with p.117Cys, SC*01 N.03, and for loss of a high prevalence antigen with p.73Cys, termed SCAC for Sc Arg to Cys. Comparative modeling aids our understanding of new alleles and Scianna antigen expression.


Subject(s)
Blood Group Antigens , Female , Humans , Base Sequence , Blood Group Antigens/genetics , India , Isoantibodies , Prevalence , Butyrophilins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...